Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice.
نویسندگان
چکیده
Autosomal recessive polycystic kidney disease (ARPKD) is characterized by the progressive dilatation of collecting ducts, the nephron segments responsible for the final renal regulation of sodium, potassium, acid-base, and water balance. Murine models of ARPKD possess mutations in genes encoding cilia-associated proteins, including Tg737 in orpk mice. New findings implicate defects in structure/function of primary cilia as central to the development of polycystic kidney disease. Our group (Liu W, Xu S, Woda C, Kim P, Weinbaum S, and Satlin LM, Am J Physiol Renal Physiol 285: F998-F1012, 2003) recently reported that increases in luminal flow rate in rabbit collecting ducts increase intracellular Ca(2+) concentration ([Ca(2+)](i)) in cells therein. We thus hypothesized that fluid shear acting on the apical membrane or hydrodynamic bending moments acting on the cilium increase renal epithelial [Ca(2+)](i). To further explore this, we tested whether flow-induced [Ca(2+)](i) transients in collecting ducts from mutant orpk mice, which possess structurally abnormal cilia, differ from those in controls. Isolated segments from 1- and 2-wk-old mice were microperfused in vitro and loaded with fura 2; [Ca(2+)](i) was measured by digital ratio fluorometry before and after the rate of luminal flow was increased. All collecting ducts responded to an increase in flow with an increase in [Ca(2+)](i), a response that appeared to be dependent on luminal Ca(2+) entry. However, the magnitude of the increase in [Ca(2+)](i) in 2- but not 1-wk-old mutant orpk animals was blunted. We speculate that this defect in mechano-induced Ca(2+) signaling in orpk mice leads to aberrant structure and function of the collecting duct in ARPKD.
منابع مشابه
Mechanoregulation of intracellular Ca concentration is attenuated in collecting duct of monocilium-impaired orpk mice
Wen Liu, Noel S. Murcia, Yi Duan, Sheldon Weinbaum, Bradley K. Yoder, Erik Schwiebert, and Lisa M. Satlin Department of Pediatrics, Mount Sinai School of Medicine, New York, New York; Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio; Department of Biomedical Engineering, The City College of New York and City University of New York Graduate School, New York, New York; a...
متن کاملHeightened epithelial Na+ channel-mediated Na+ absorption in a murine polycystic kidney disease model epithelium lacking apical monocilia.
The Tg737 degrees (rpk) autosomal recessive polycystic kidney disease (ARPKD) mouse carries a hypomorphic mutation in the Tg737 gene. Because of the absence of its protein product Polaris, the nonmotile primary monocilium central to the luminal membrane of ductal epithelia, such as the cortical collecting duct (CCD) principal cell (PC), is malformed. Although the functions of the renal monocili...
متن کاملThe Rhododendron dauricum L. Flavonoids Exert Vasodilation and Myocardial Preservation
Rhododendron dauricum L. is an ancient Chinese traditional herb. The pharmacological effects of R. dauricum extract have been shown in chronic tracheitis. The aim of this study was to investigate the cardiovascular effects of Rhododendron dauricum L. flavonoids (RF) on rats and its mechanisms. This study was performed in isolated vascular rings and a rat model of myocardial infarction and isola...
متن کاملThe Rhododendron dauricum L. Flavonoids Exert Vasodilation and Myocardial Preservation
Rhododendron dauricum L. is an ancient Chinese traditional herb. The pharmacological effects of R. dauricum extract have been shown in chronic tracheitis. The aim of this study was to investigate the cardiovascular effects of Rhododendron dauricum L. flavonoids (RF) on rats and its mechanisms. This study was performed in isolated vascular rings and a rat model of myocardial infarction and isola...
متن کاملLoss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells.
Recent genetic analysis has identified a pivotal role of primary cilia in the pathogenesis of polycystic kidney disease (PKD). However, little is known regarding how cilia loss/dysfunction contributes to cyst development. In epithelial cells, changes in apical fluid flow induce cilia-mediated Ca2+ entry via polycystin-2 (PC2), a cation channel. The Oak Ridge Polycystic Kidney (orpk) mouse conta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 289 5 شماره
صفحات -
تاریخ انتشار 2005